Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

نویسندگان

  • Panos G. Datskos
  • Michael J. Sepaniak
  • Lawrence R. Senesac
  • Nickolay Lavrik
  • Pampa Dutta
  • Mustafa Culha
چکیده

Research Objectives Our multifaceted research program is aimed at the fundamental and practical development of hybrid micro-electro-mechanical-systems (MEMS) that integrates several elements of chemical selectivity and sensor function. We are developing MEMS sensors that combine chemimechanical transduction, and surface enhanced Raman spectroscopy (SERS) and radiation detection. One of our goals is to develop highly effective methods of immobilizing a wide variety of molecular and ionic recognition phases onto micromechanical surfaces. We have introduced fundamentally new modes of adsorbate-induced surface stress through nano-structuring of microcantilever surfaces; the responsivity for has increased by over two-orders of magnitude over previously existing technological approaches. Noble metal nanostructures similar to those that enhance chemi-mechanical transduction exhibit substantial Raman enhancement factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm

This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...

متن کامل

A Complete Methodology for Electro-Mechanical Characterization of a CMOS Compatible MEMS Technology

In this paper we present a complete methodology for efficient electro-mechanical characterization of a CMOS compatible MEMS technology. Using an original test structure, the so-called “U-shape cantilever beam,” we are able to determine all mechanical characteristics of force sensors constituted with elementary beams in a given technology. A complete set of electro-mechanical relations for the d...

متن کامل

Strain gradient torsional vibration analysis of micro/nano rods

Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004